
Techno-Science Research Journal 12 (1) (2024) P 61-69 
 

 
 
 

Content list available at ITC 

Techno-Science Research Journal 
Journal Homepage: http://techno-srj.itc.edu.kh/ 

 

 

61 

 

Comparative Analysis of Different Clustering Techniques in Hybrid AC/DC 

Microgrid  
Yoklin Neov1,2*, Oudaya Eth1,2, Kimsrornn Khon 1,2 

1  Energy Technology and Management Unit, Research and Innovation Center, Institute of Technology of Cambodia, Russian 

Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia 
2 Department of Electrical and Energy Engineering, Faculty of Electrical Engineering, Institute of Technology of Cambodia,  

Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia 

Received: 01 September 2023; Accepted: 22 December 2023; Available online: June 2024 

Abstract:   Rural electrification is a critical challenge in many developing countries, where conventional grid extension is often not 

feasible or cost-effective due to low load density and long distances. Hybrid AC/DC microgrids offer a promising alternative solution, 

providing a reliable and sustainable electricity supply to rural communities. This study presents a comparative analysis of four 

clustering techniques (hierarchical, k-means, fuzzy c-means, and gaussian mixture models) for optimizing cable routing by grouping 

loads in a low-voltage hybrid AC/DC microgrid in rural electrification areas. The proposed approach consists of several stages: (1) 

grouping loads into the clusters using four clustering techniques; (2) optimizing the radial topology in clusters of the microgrid by 

using minimum spanning tree (MST) and shortest path algorithms (SP); (3) balancing the three-phase system using mixed-integer 

linear programming (MILP); and (4) performing an economic analysis to evaluate the effectiveness of the four clustering techniques. 

The methodology is applied to a real case study of an island area in Cambodia, and the performance of a hybrid microgrid under 

different clustering configurations is compared. The results show that k-means clustering is the most cost-efficient solution for 

optimizing the topology of a hybrid AC/DC microgrid in rural Cambodia. 

Keywords: Clustering technique, Optimization, Hybrid AC/DC, Microgrid. 

 

 

1. INTRODUCTION1 

Rural electrification is a vital factor for the social and 

economic development of any country, especially in developing 

countries like Cambodia, where more than 18% of the rural 

population still lacks access to electricity [1,2]. However, the 

extension of the centralized grid to remote and isolated areas is 

often impractical and costly due to the low demand, long 

distances, and difficult terrain [3]. Therefore, decentralized and 

renewable energy solutions, such as AC or DC grid, are 

considered a viable alternative to provide reliable and 

affordable electricity to rural communities.  

In paper [4], the author explored the optimal radial 

topology of the LVAC distribution system using the shortest 

path algorithm (SPA) and the first-fit bin-packing algorithm 

(FFBPA). They suggested locations for photovoltaic (PV) 

installations within the network. However, the sizing of PV 

systems was determined through iterative techniques, and the 

 
* Corresponding author: Neov Yoklin 

E-mail: neov_yoklin@gsc.itc.edu.kh; Tel: +855-93 337 560 

placement of decentralized batteries was determined using a 

genetic algorithm (GA). In another study [5], a radial structure 

and phase balancing were sought through mixed integer 

quadratically constrained programming (MIQCP). Then, the 

GA algorithm was used to identify the maximum PV size to be 

injected into the system. Notably, these previous studies solely 

focused on the AC system. In this study, a low-voltage hybrid 

AC/DC microgrid planning approach is proposed, specifically 

based on DC loads. The DC structure is designed in a way that 

enables the AC main feeder to supply DC loads using AC/DC 

converters in each cluster. To achieve this, clustering 

techniques are employed. Clustering is a well-established 

unsupervised data mining technique used for data set 

segmentation [6] that is increasingly being applied in the 

electrical power system [7]. Previous research has utilized 

various unsupervised clustering algorithms, such as DBSCAN 

and GMMs, for classifying household electricity consumers [8]. 

Other studies [9], have employed fuzzy logic algorithms for 

optimal placement of distributed generation (DG) to minimize 

power losses and improve voltage profiles and power quality. 

In a specific paper [10], the author utilized K-means clustering 

to group DC loads, which facilitated the identification of the 
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DC structure, optimal AC/DC converter locations, and 

electrical poles in an LV AC/DC microgrid in unelectrified 

regions. This approach offers potential cost reduction for 

AC/DC converters and conductors, ensures even distribution of 

DC loads across the cluster, and enhances the reliability and 

efficiency of the microgrid. Expanding upon previous studies, 

the researchers have not investigated the comparison of 

clustering techniques in the context of microgrid planning.  

This study conducts a comparative analysis of four distinct 

clustering techniques for optimizing cable routing by grouping 

loads in a low-voltage hybrid AC/DC microgrid in rural 

electrification areas. The application and comparison of 

clustering techniques in this research serve the purpose of 

identifying the most suitable approach for load grouping and 

cable routing optimization, contributing to the design of 

efficient and cost-effective microgrid planning. The clustering 

techniques under consideration are k-means clustering, fuzzy c-

means clustering, hierarchical clustering, and Gaussian mixture 

models clustering. The performance of these clustering 

techniques will be evaluated based on a comprehensive set of 

technical and economic criteria.  

The rest of this paper is structured as follows: Section 2 

provides a comprehensive explanation of the four clustering 

techniques and outlines the proposed methodology for 

designing the hybrid microgrid topology. Then, Section 3 

presents the test case study and simulation results. Finally, 

Section 4 concludes the paper and offers valuable insights for 

future research directions. 

2. METHODOLOGY 

The process of designing the hybrid AC/DC distribution 

microgrid, illustrated in  Fig 1, involves the following steps: 

• Step 1: Input the system data, which includes the 

coordinates of MV/LV transformers, loads (households), 

power demand, electrical poles, and line impedances. 

• Step 2: Apply four clustering algorithms (Hierarchical, K-

means, FCM, and GMMs) to group the DC loads. The 

optimal number of clusters is determined using the Davies-

Bouldin method. 

• Step 3: Construct the minimum spanning tree to connect 

all DC loads inside each cluster. 

• Step 4: Utilize the shortest path algorithm to determine the 

minimum length between each load and the poles. Then the 

AC/DC converters are placed on the pole based on the 

minimum DC power losses. 

• Step 5: Perform a DC load flow analysis to ascertain the 

DC cross-section for each cluster. This should be based on 

the acceptable voltage and current requirements identified 

during DC load flow testing. 

• Step 6: Allocate the DC clusters to different phases using a 

Mixed-Integer Linear Programming technique. This 

ensures the distribution is balanced. 

• Step 7:  Conduct an AC unbalance load flow analysis to 

determine the optimal AC cross-section of the main lines, 

taking into account technical constraints. 

• Step 8: Analyze the cost consumption (CAPEX, OPEX, 

TOTEX) to evaluate the effectiveness of the four clustering 

techniques used in the system design. 

Start

Input Data

Coordination of  MV/LV transformer, electrical poles, 

household, power demand & line impedance

Shortest connection between poles and loads

Shortest Path Algorithm (SP)

Power Phase balancing (Pole balancing)

Mixed Integer Linear Program (MILP)

Cost consumption (OPEX, CAPEX, TOTEX) 

End 

Minimum connection inside each cluster

 Minimum Spanning Tree (MST), Kruskal

Grouping DC loads in to the clusters 

  Hierarchical,  K-means, Fuzzy C-means, GMMs 

AC unbalance load flow

(BWFW :backward forward)

Sizing of DC conductor of each cluster

DC load flow 

 

Fig 1. Flowchart of the process method 

2.1 Clustering techniques 

This section will provide an overview of the four clustering 

techniques employed in this study, namely agglomerative 

hierarchical clustering (AHC), k-means clustering, fuzzy c-

means (FCM) clustering, and Gaussian mixture models 

(GMMs) clustering. Each technique is utilized to analyze and 

classify data in the context of hybrid AC/DC microgrid 

planning. 

2.1.1 Agglomerative Hierarchical Clustering (AHC) 

Agglomerative hierarchical clustering is a clustering 

technique that follows a bottom-up approach. It starts by 

considering each object as an individual cluster and then 

progressively merges clusters together until all objects are 

grouped into a single cluster [11]. here are three main 

categories of agglomerative hierarchical clustering based on the 
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similarity measures or linkages used in the merging process. 

These categories are described in the following sections.  

( )min ,, min ( , )x X y YD X Y d x y =             (Eq. 1) 

( )max ,, max ( , )x X y YD X Y d x y =             (Eq. 2) 

( )
1

, ( , )average x X y Y
D X Y d x y

X Y  
=            (Eq. 3) 

Where, minD is single linkage, maxD is complete linkage, 

averageD  is average linkage, ,x y are data point, D  is pair distance 

of data point ,x y .  

2.1.2 K-means Clustering   

K-means clustering is a partitioning method that assigns 

data into k clusters. The main objective is to minimize the 

squared error of the distances to cluster centers, thereby 

reducing the total distance of the clusters [12]. The objective 

function J is defined as follows: 

2
( )

1 1
 

K N j

i jj i
Minimize J x c

= =
= −                (Eq. 4) 

Where, 𝑖 is the index of data point, j is the index of cluster, 

N is the number of data points, K is number of clusters, x is the 

data point, c is the cluster center.  

2.1.3 Fuzzy C-means clustering  (FCM) 

Fuzzy c-means (FCM) is another method belonging to the 

K-centers family [13]. It shares similarities with K-means 

clustering, but in FCM, each instance is assigned a grade of 

membership to each cluster [14,15]. The objective function of 

FCM aims to minimize a certain criterion, as shown in Eq. (5). 

In fuzzy clustering, a load curve is not exclusively assigned to a 

single cluster. Instead, the degree of membership determines 

the extent to which a load curve belongs to each cluster, as 

shown in Eq. (6). An observation is assigned to the cluster with 

the highest membership degree [16]. The membership degrees 

are updated at each step according to Eq. (7). 
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Where, Jm is the objective function to be minimized, N  is 

the number of data points, K is the number of clusters, 𝑚 is the 

fuzzy partition matrix exponent that controls the degree of 

overlap between clusters, μij is the degree of membership of 

data point i-th to cluster j-th. 

2.1.4 Gaussian Mixture Models Clustering (GMMs)  

Gaussian Mixture Models (GMM) is a type of model-based 

clustering that uses a probabilistic model to cluster data, as 

denoted by Eq. (8). The model assumes that the data points are 

generated from a mixture of Gaussian distributions, where each 

Gaussian distribution represents a cluster. The algorithm 

proceeds iteratively to estimate the parameters of these 

Gaussian distributions, aiming to maximize the likelihood of 

the data given the model. The quality of fit of the model to the 

data is evaluated using the log-likelihood function, as expressed 

by Eq. (9). The parameters of the GMMs, including the mixing 

coefficient πj, means μj, and covariance matrix Σj, are estimated 

using Eq. (10) through Eq. (12) [17,18]. 
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Where, x is the data point, N is the number of data point,  j 
is the index of cluster, K is the number of clusters, γ  is 

posterior probability, πj is the mixing coefficient, N(x|μj,j) is 

the multivariance normal distribution with means μj and j 

covariance matrix for cluster j.  

2.1.5 Davies-Bouldin Index (DBI) 

This study will utilize the Davies-Bouldin index to assess 

the optimal number of clusters for four clustering techniques. 

The index measures the average similarity between each cluster 

and its most similar cluster based on the ratio of within-cluster 

distance to between-cluster distance. A lower DBI value 

indicates better clustering quality [19]. 

'

' '
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 + 
=                      (Eq. 13) 

Where, i and j are the index of cluster, K is the number of 

cluster, c is the cluster center,  is the inter-cluster distance, ∆ is 

the average distance. 
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2.2 Minimum Spanning Tree (MST), Krusal  

A minimum spanning tree (MST) is a subset of the edges 

of a graph G that connects all vertices (nodes) together with the 

minimum total edge weight and without any loops (cycles). 

This algorithm was developed by J. B. Kruskal [20]. In graph 

G=(V,E),  V represents the vertices and E represents the edges. 

1 2( , ,...., )nV v v v=                                  (Eq. 14) 

1 2( , ,...., )nE e e e=            (Eq. 15) 

2.4 Costs Consumption 

The total costs of the system are divided into capital 

expenditure (CAPEX) and operational expenditure (OPEX). 

The CAPEX includes the costs of cables, converters, and 

replacement costs, whereas the OPEX consists of the cost of 

energy purchased from the grid or transformer and maintenance 

costs [21]. The equations for CAPEX, OPEX, and TOTEX are 

written as follows: 

cable converter replacementCAPEX C C C= + +          (Eq. 16) 

/ int

0 (1 )

T grid elect grid ma

tt

E C C
OPEX

r=

 +
=

+
          (Eq. 17) 

TOTEX CAPEX OPEX= +                      (Eq. 18) 

Where, TOTEX  is the total expenditure, CAPEX is the 

capital expenditure, OPEX operational expenditure,  Ccable is 

cable cost [k$], Cconverter is converter cost [k$],  Creplacement is the 

replacement cost of converters, Egrid is energy purchased from 

grid [kWh],  Celec/grid is the cost of purchased energy from grid 

[k$/kWh], Cmaint is maintenance cost, r is discount rate [%], t is 

the index of time, T is planning year.  

3. RESULTS AND DISCUSSION 

3.1 Input Data 

Table 1 displays the input data employed in the simulation. 

The study centered on implementing diverse topologies through 

four clustering techniques, comparing them over a 25-year 

duration while excluding load growth from the analysis. 

Table 1. Input data [22,23]. 

  Items Values 
  Planning period [years] 25 

  Discount rate [%] 6 
  AC/DC converter [k$/kW] 0.8 
  Converter lifetime [years] 15 

  Converter efficiency [%] 90 
  Converter maintenance cost   [k$/kW] 0.0115 
  Cost of purchase energy from grid [k$/kWh] 0.000121 
  Cost AC cable 25 mm2 [k$/km] 4.06 
  Cost DC cable 16 mm2 [k$/km] 2.49 
  Cost DC cable 35 mm2 [k$/km] 5.55 
  Cost DC cable 50 mm2 [k$/km] 7.45 

3.2 Case Study   

Inn is a village situated in the southwestern region of Koh 

Rong Island, which is located in Preah Sihanouk province, 

Cambodia. This village is considered non-electrified and 

consists of 73 households with a total power consumption of 

29.52 kW. Fig 2 illustrates the village's 12 electrical poles 

providing DC power, which are connected to an MV/LV 

transformer (22kV/0.4kV). The 50V DC voltage level was 

selected regarding the consumers in a rural area [24]. 

          
Fig 2. DC households and electrical poles. 

 
     Fig 3. Daily loads curve. 
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Fig 3, the daily load curve of the case study is depicted, 

with the peak load occurring at 19:00. It is assumed that the 

yearly load curve repeats the daily load curve over 365 days 

due to the absence of electric heater usage by consumers. 

To achieve the objective, four different clustering 

techniques, namely AHC, k-means, FCM, and GMMs, were 

employed to categorize all the DC loads into eight clusters (k=8 

clusters), as shown in Fig 4. The optimal number of clusters for 

each technique was determined using the Davies-Bouldin 

method (DB). By applying these techniques, it became possible 

to identify and visualize distinct clusters for the DC loads. In 

Fig 4, each cluster is visually represented by a unique color, 

which remains consistent for all the loads assigned to that 

specific cluster.  

          
            (a)  Hierarchical clustering 

 
                               (b) K-means clustering 

                        
                                         (c) FCM clustering 

 
                             (d) GMMs clustering 

Fig 4. Loads are classified by four clustering techniques. 
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 To supply AC power to the DC loads in each cluster, a 

total of eight AC/DC converters are required. The Minimum 

Spanning Tree (MST) algorithm is utilized to calculate the 

minimum length of DC cable needed for each cluster. 

Furthermore, the Shortest Path (SP) algorithm is employed to 

determine the clusters connected to the poles where the AC/DC 

converters will be installed. Fig 5 illustrates the comprehensive 

hybrid AC/DC radial distribution system that incorporates four 

distinct clustering techniques. This system consists of multiple 

DC clusters that receive power from 3-phase, 4-wire sources 

via AC/DC converters. To meet voltage constraints specified by 

the low voltage system regulation [0.90 pu, 1.1 pu], the cross-

section of DC cable was selected shown in Table 2 and the AC 

main feeder was chosen as 25 mm2.  

             

            (a)  Hierarchical clustering 

 

                               (b) K-means clustering 

              

                                         (c) FCM clustering 

 

                             (d) GMMs clustering 

Fig 5. Complet hybrid AC/DC distribution system from difference clustering.  
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In Fig 5, the color of the DC lines representing each cluster 

has been adjusted to reflect the phase connection of the 

respective cluster. This visual representation helps to identify 

the phase allocation and highlights the distribution of clusters 

across the three-phase system. By utilizing the MILP algorithm 

and considering phase allocation, the AC/DC distribution 

network achieves a balanced and efficient topology, supporting 

reliable power delivery to the clusters while maintaining load 

equilibrium in the AC distribution system. Table 3 presents a 

comparison result of four different clustering techniques 

applied to the design of a low-voltage hybrid AC/DC microgrid 

topology for a 25-year planning period. 

Table 2. DC crosssection of four clustering techniques measured over 

a period of 25 year. 

DC cross-section (mm2) 

Clusters No. 1 2 3 4 5 6 7 8 

Hierarchical 16 16 70 35 25 70 35 35 

K-means  16 35 50 50 70 25 16 25 

FCM 16 35 25 50 35 50 35 35 

GMMs 16 10 25 50 70 70 16 25 

Table 3. Results of comparison of hierarchical k-means fuzzy c-means and GMMS and clustering for a 25-year planning period. 

Items Hierarchical K-means Fuzzy C-means GMMS 
Number of clusters 8 8 8 8 

Number of converters 8 8 8 8 

Total length of DC conductor (m) 2380 2368 2434 2442 

Total length of AC conductor (m) 1832 1830 1925 1940 

Total energy loss (MWh/year) 3.308 3.223 3.320 3.326 

Energy purchased from grid (MWh) 1515.375 1510.225 1515.5 1516.075 

CAPEX (k$) 57.855 56.709 58.501 59.948 

OPEX (k$) 109.198 108.844 109.213 109.247 

TOTEX (k$) 167.053 165.553 167.715 169.195 

Based on Table 3, four techniques (AHC, K-means, FCM, 

and GMMs) resulted in the same number of clusters and 

converters, indicating that the load grouping was consistent 

between the four methods. This suggests that both techniques 

were successful in dividing the load into distinct clusters, 

facilitating effective cable routing. 

When evaluating the physical layout of the microgrid, the 

total length of the AC and DC conductor was found to be lower 

in the K-means clustering, measuring (2368 m) and (1830 m), 

respectively compared to the other three clusterings. This 

indicates that K-means was successful in minimizing the 

distances between the DC loads and converters, as well as 

between the AC loads and the grid connection point. 

In terms of energy performance, the K-means clustering 

exhibited slightly lower energy losses with a value of 3.223 

MWh/year compared to the other techniques. This suggests that 

the K-means clustering technique may have been more 

effective in minimizing energy losses within the microgrid. 

Regarding the energy supply from the grid, four techniques 

showed similar results, with the HAC clustering requiring the 

purchase of 60.615 MWh/year, the K-means clustering 

requiring 60.409 MWh/year, the FCM clustering 60.620 

MWh/year, and GMMs requiring 60.643 MWh/year. This 

indicates that both designs had comparable dependencies on the 

external grid for energy supplementation. 

Considering the economic aspects, K-means clustering 

showcased superior cost-effectiveness by considering both 

capital expenditure (CAPEX) and operational expenditure 

(OPEX), resulting in a lower total expenditure (TOTEX) of 

165.553 k$ among the four techniques. This suggests that K-

means achieved a favorable trade-off between investment and 

operational costs, surpassing the performance of the other three 

techniques 

Overall, the analysis results obtained from each clustering 

technique revealed slight differences in the physical layout, 

energy performance, and economic implications of the 

microgrid design. However, the K-means clustering 

outperformed to the other three clustering in terms of 

minimizing, cable routing, energy losses, and achieving cost 

optimization. Therefore, the K-means clustering technique is 

recommended for the concept of hybrid AC/DC microgrid 

planning in rural areas of Cambodia, as it offers improved 

energy efficiency and cost-effectiveness. 

Fig 6 displays a spider diagram that outlines the relevant 

features of four clustering techniques, namely hierarchical, k-

means, FCM, and GMMs, for designing a hybrid microgrid. 
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Fig 6. Comparison of hierarchical, K-means, FCM and GMMs 

clustering techniques. 

4. CONCLUSIONS 

This study aimed to compare four clustering techniques ( 

hierarchical, k-means, fuzzy c-means, and GMMs) for 

designing a low-voltage hybrid AC/DC microgrid in rural 

electrification areas of Cambodia over 25 years. The 

comparison was based on an array of technical and economic 

criteria. The entire methodology was implemented in a real-

world scenario involving an island area in Cambodia. The 

results indicated that the k-means clustering exhibited lower 

energy loss and energy purchased from the grid, with values of 

3.223 MWh/year and 60.409 MWh/year, respectively, 

compared to the other three clustering techniques. This suggests 

that the k-means technique efficiently balanced the energy 

supply and demand within the system, resulting in reduced 

reliance on the grid. However, k-means clustering emerged as 

the most cost-effective option, considering both capital 

expenditures (CAPEX) and operational expenditures (OPEX). 

This resulted in the lowest total expenditure (TOTEX), 

amounting to 165.553 k$. The findings indicate that k-means 

successfully struck a better balance between investment and 

operational costs compared to the other techniques. The study 

underscores the effectiveness of clustering techniques in 

developing cost-efficient microgrids in rural areas. 

As a future direction to enhance this research, we 

recommend exploring the optimal locations and dimensions for 

photovoltaic (PV) systems and energy storage units within the 

microgrid cluster, considering load growth, seasonal load 

variation, and uncertainty. This would facilitate greater 

integration of renewable energy sources, enhancing the overall 

sustainability and resilience of the system and making it more 

resistant to fluctuations in load demand. 
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